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Abstract

For efficient aeroacoustic computation at low Mach numbers, the linearized perturbed compressible equations (LPCE)
are proposed. The derivation is based on investigation of the perturbed vorticity transport equations. In the original hydro-
dynamic/acoustic splitting method, perturbed vorticity is generated by a coupling effect between the hydrodynamic vortic-
ity and the perturbed velocities. At low Mach numbers, the effect of perturbed vorticity on sound generation is not
significant. However, the perturbed vorticity easily becomes unstable, and causes inconsistent acoustic solutions, based
on grid dependence. The present LPCE ensures grid-independent acoustic solutions by suppressing the generation of
perturbed vorticity in the formulation. The present method is validated for various dipole and quadruple vortex-sound
problems at low Mach numbers: (i) laminar dipole tone from a circular cylinder at Reynolds number based on the cylinder
diameter, ReD = 150 and free stream Mach number, M1 = 0.1, (ii) quadruple sound of Kirchhoff vortex at Mach number
based on the rotating speed, MH = 0.1, and (iii) temporal mixing layer noise at Reynolds number based on the shear layer
thickness, Red = 10000 and Mach number based on the shear rate, Ms = 0.1.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Many industrial flow applications such as automobiles, fans, and etc. operate at low speeds and low aeroa-
coustic Mach numbers, e.g. M 6 0.3. Direct numerical simulation (DNS) of low Mach number aeroacoustics
still remains a challenging problem because of scale disparities between the hydrodynamic vortical motions
and the acoustic waves. In this regard, a hydrodynamic/acoustic splitting method is considered a good alter-
native for prediction of flow noise at low Mach numbers.

In previous hydrodynamic/acoustic splitting method [7,17,18], a flow field is obtained by solving the incom-
pressible Navier–Stokes equations, while the acoustic field is predicted by the perturbed Euler equations (PEE)
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which are derived by subtracting the incompressible Navier–Stokes equations from the compressible ones,
neglecting the viscous terms. It is generally known that at low Mach numbers, a flow at mean-state is obtained
much faster by solving the incompressible Navier–Stokes equations. Therefore, the hydrodynamic/acoustic
splitting method is considered computationally more efficient than the direct numerical simulation as well
as the other hybrid methods [3], based on the compressible Navier–Stokes equations. Moreover, computa-
tional efficiency can be further enhanced, if grid systems for flow and acoustics are treated separately.

It is important to note that the perturbed Euler equations [7,17,18] are mixed-scales, non-linear equations,
in which a coupling effect is allowed between the incompressible flow variables and the perturbed quantities.
Through this coupling effect, a non-radiating vortical component, so-called ‘perturbed vorticity’, is generated
in the perturbed system. One of the computational difficulties in the splitting method comes from the fact that
this perturbed quantity is only retained in the perturbed system and therefore any backscattering of the com-
pressibility effect onto the incompressible flow is not allowed. Although the role of perturbed vorticity on
sound generation is negligible at low Mach numbers, this perturbed quantity can easily become unstable
for various reasons and eventually becomes self-excited. As a result, inconsistent acoustic solutions may result
from the perturbed Euler equations [15].

The perturbed compressible equations (PCE) proposed by present authors [15] remedy the false generation
of perturbed vorticity by handling its generation and diffusion properly, especially when noise source is in the
shear flow. In PCE, the perturbed Euler equations are modified by introducing the perturbed viscous stresses
in the momentum equations and the perturbed energy equation is formally derived from the compressible
thermal energy equation. The PCE has been tested for various applications [12,16], including laminar dipole
tone from a circular cylinder at ReD = 200 and M1 = 0.3. For this problem, the PCE solution was shown to
be accurate as the DNS solution [15].

In parallel, computational efficiency and accuracy of the PCE in conjunction with the ‘grid-splitting’ tech-
nique has been investigated [11,15]. The study shows that perturbed vorticity could become unstable, if acous-
tic grid resolution is not properly used. This is because the length scale of the perturbed vorticity is not
comparable to that of acoustic waves but closer to the hydrodynamic vortical scale. Thereby, in some cases,
grid-dependent acoustic solutions may result from the falsely resolved perturbed vorticity.

In order to resolve aforementioned matters, the linearized perturbed compressible equations (LPCE), a
modified version of the original PCE, are proposed in the present study. In LPCE, generation of perturbed
vorticity is firmly suppressed by dropping the non-linear coupling terms that contribute to generate vortical
components in the perturbed system. This will exclude errors related to the perturbed vorticity, deliberating
the fact that it is not an important acoustic source at low Mach numbers. Through this modification, LPCE
solutions can be independent of grid resolution and computational efficiency with the grid-splitting technique
can be fully achieved.

The present paper is organized as follows. In Section 2, the perturbed compressible equations (PCE) and
perturbed vorticity transport equations are revisited, and the linearized perturbed compressible equations
(LPCE) are derived. Numerical schemes and methodologies used in this study are introduced in Section 3.
In Section 4, three numerical problems (dipole and quadruple) are tested to validate the proposed LPCE for-
mulation. Finally, concluding remarks are summarized in Section 5.
2. Formulations

2.1. Perturbed compressible equations (PCE)

In the hydrodynamic/acoustic splitting method, the instantaneous total flow variables are decomposed into
incompressible and perturbed compressible variables as:
qð~x; tÞ ¼ q0 þ q0ð~x; tÞ;
~uð~x; tÞ ¼ ~Uð~x; tÞ þ ~u0ð~x; tÞ;
pð~x; tÞ ¼ P ð~x; tÞ þ p0ð~x; tÞ:

ð1Þ
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The incompressible flow variables describe unsteady viscous flow, while acoustic fluctuations and other com-
pressibility effects are represented by perturbed compressible variables. A hydrodynamic flow field is solved by
the incompressible Navier–Stokes equations, while its compressibly perturbed field is calculated by the per-
turbed compressible equations (PCE).

The perturbed compressible equations are written as:
oq0

ot
þ ð~u � rÞq0 þ qðr � ~u0Þ ¼ 0; ð2Þ

o~u0

ot
þ ð~u � rÞ~u0 þ ð~u0 � rÞ~U þ 1

q
rp0 þ q0

q
D~U
Dt
¼ 1

q
~f 0vis; ð3Þ

op0

ot
þ ð~u � rÞp0 þ cpðr �~u0Þ þ ð~u0 � rÞP ¼ �DP

Dt
þ ðc� 1ÞðU�r �~qÞ; ð4Þ
where D=Dt ¼ o=ot þ ð~U � rÞ, ~f 0vis is the perturbed viscous force vector, U and ~q represent thermal viscous
dissipation and heat flux vector, respectively. At low Mach numbers, the perturbed viscous forces can be
approximated as
f 0vis;i ¼ l0

o

oxj

ou0i
oxj
þ

ou0j
oxi
� 2

3

ou0k
oxk

dij

� �
ð5Þ
by assuming viscosity l @ l0 (=constant), and U and ~q are expressed as:
U ¼ l
ouj

oxk
þ ouk

oxj
� 2

3

oul

oxl
djk

� �
ouk

oxk
; ð6Þ

qj ¼ �k
o

oxj

cp
q

� �
. ð7Þ
Details of PCE derivation can be found in Ref. [15].
Eqs. (2)–(4) along with the incompressible Navier–Stokes equations are a two-step hybrid method. For low

Mach number and non thermally driven flows, �DP/Dt term on the right hand side of Eq. (4) can be regarded
as the only explicit acoustic source term. It is also interesting to note that Eq. (4) can be re-written as a ‘Dila-
tation rate equation’,
D ¼ � 1

qc2

dP
dt
þ dp0

dt

� �
þ T ; ð8Þ
where D ¼ r �~u0 is the dilation rate, d=dt ¼ o=ot þ ð~u � rÞ, T ¼ ðc� 1ÞðU�r �~qÞ=ðqc2Þ is the thermal effect
term, and the relation of cp = qc2 is used. From Eq. (8), one can see that compressibility (or dilation rate)
effect is related to the total derivative of the pressure (hydrodynamic and perturbed combined). The PCE solu-
tions were critically evaluated with the DNS and Curle’s acoustic analogy solutions for the cylinder dipole
tone at ReD = 200 and M1 = 0.3 [15].

2.2. Perturbed vorticity transport equations

Since perturbed variables in PCE are residuals of the total variables with incompressible components
subtracted, they represent not only the acoustic fluctuations but also the other compressibility effects such as
coupling effects between the hydrodynamic flow and the perturbed field. One particular component of the per-
turbed variables related to the consistency of the acoustic solution is perturbed vorticity (~x0 ¼ r �~u0), a ‘non-
radiating’ vortical component generated in the PCE system. This fluctuating quantity becomes unstable for
various reasons and generates unwanted errors in acoustic calculations [15]. Here, attention is given to identify
the terms associated with production and diffusion of the perturbed vorticity in its transport processes.

In order to derive the perturbed vorticity transport equations, the perturbed momentum equation, Eq. (3) is
re-written as
o~u0

ot
þrð~u0 � ~UÞ þ r 1

2
~u0 �~u0

� �
þ ð~x0 � ~UÞ þ ð~X�~u0Þ þ ð~x0 �~u0Þ þ 1

q
rp0 ¼ � q0

q
DU
Dt
þ 1

q
~f 0vis ð9Þ
with mathematical identities,
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ð~U � rÞ~u0 þ ð~u0 � rÞ~U ¼ rð~u � ~UÞ þ ð~x0 � ~UÞ þ ð~X�~u0Þ

and
ð~u0 � rÞ~u0 ¼ r 1

2
~u0 �~u0

� �
þ ð~x0 �~u0Þ;
and definitions of ~x0 ¼ r �~u0 and ~X ¼ r� ~U .
Taking a curl on the left hand side of Eq. (9) yields
o~x0

ot
þ ð~u � rÞ~x0 þ ~x0ðr �~u0Þ þ ð~u0 � rÞ~Xþ ~Xðr �~u0Þ � ð~X � rÞ~u0 � ð~x0 � rÞ~u� 1

q2
rq�rp0ð Þ. ð10Þ
With the incompressible Navier–Stokes equations, the right hand side of Eq. (9) can be re-written as
q0

q0q
rP � q0

q
m0r2~U þ 1

q
~f 0vis; ð11Þ
and the curl of Eq. (11) yields
1

q2
ðrq�rP Þ þ r � 1

q
~f 0vis �

q0

q
m0r2~U

� �
. ð12Þ
Combining Eqs. (10) and (12) and dividing both sides by q, one obtains the perturbed vorticity transport
equations
o

ot
~x0

q

� �
þ ð~u � rÞ ~x0

q

� �
¼ 1

q
½ð~X � rÞ~u0|fflfflfflfflffl{zfflfflfflfflffl}

I-a

þ ð~x0 � rÞ~u|fflfflfflfflffl{zfflfflfflfflffl}
I-b

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

� 1

q
½ð~u0 � rÞ~X|fflfflfflfflffl{zfflfflfflfflffl}

II-a

þ~Xðr �~u0Þ|fflfflfflfflffl{zfflfflfflfflffl}
II-b

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

þ 1

q3
ðrq�rpÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

III

þ 1

q
r�~F vis|fflfflfflfflfflffl{zfflfflfflfflfflffl}

IV

;

ð13Þ

where ~F vis ¼ ~f 0vis � q0m0r2~U

� �
=q.

In Eq. (13), one can clearly see that perturbed vorticity is generated and diffused by source terms on the
right hand side through: (i) coupling effects between the hydrodynamic vorticity and the perturbed velocities
(terms I and II), (ii) entropy field (term III), and (iii) viscous force (term IV). Term I is related to the three-
dimensional effect of vortex stretching: stretching of hydrodynamic vorticity by perturbed velocities (term
I-a) and stretching of perturbed vorticity by total velocities (term I-b). Term II represents a more direct coupling
between the hydrodynamic vorticity and the perturbed velocities. The convective effect of hydrodynamic vor-
ticity by perturbed velocity is represented by term II-a, whereas term II-b is related to the dilatation rate effect.
Term III is not so important for low Mach number, non thermally driven flows and term IV only provides
physical diffusion to the perturbed vorticity. In our previous study [15], it was shown that term II-a is the most
dominant source term that generates perturbed vorticity and term II-b is considered less important at low
Mach numbers.

It is interesting to note that perturbed vorticity is not a ‘radiating’ acoustic quantity but a ‘convecting’
hydrodynamic vortical. Its physical meaning represents modification of the hydrodynamic vorticity through
interactions between the hydrodynamic vorticity and the velocity fluctuations. At low Mach numbers, the
magnitude of the perturbed vorticity is small but, if falsely resolved, it becomes self-excited and grows to affect
the acoustic solution. Since term II-a is related to the gradient of hydrodynamic vorticity X, perturbed vortic-
ity usually appears at the edge of the hydrodynamic vorticity and its length scale is similar to (or sometimes
smaller than) the hydrodynamic vortical scale. Therefore, acoustic grid resolution must carefully be handled in
PCE calculation.

2.3. Linearized perturbed compressible equations (LPCE)

The linearized perturbed compressible equations (LPCE) are proposed to secure a stable and grid-indepen-
dent acoustic solution. Neglecting the second-order, non-linear terms such as ð~u0 � rÞ~u0, the original PCE, Eqs.
(2)–(4) can be re-written as:
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oq0

ot
þ ð~U � rÞq0 þ q0ðr �~u0Þ ¼ 0; ð14Þ

o~u0

ot
þrð~u0 � ~UÞ þ 1

q0

rp0 ¼ �ð~X�~u0Þ � ð~x0 � ~UÞ � q0

q0

D~U
Dt
þ 1

q0

~f 0vis; ð15Þ

op0

ot
þ ð~U � rÞp0 þ cP ðr �~u0Þ þ ð~u0 � rÞP ¼ �DP

Dt
þ ðc� 1ÞðU�r �~qÞ; ð16Þ
with mathematical identity, ð~U � rÞ~u0 þ ð~u0 � rÞ~U ¼ rð~u0 � ~UÞ þ ð~X�~u0Þ þ ð~x0 � ~UÞ used in Eq. (15). Since
the left hand side of Eq. (15) does not generate any vortical component, only the right hand side terms are
responsible for the generation of perturbed vorticity. The first two terms, ~X�~u0 and ~x0 � ~U correspond to
the dominant source terms (terms I and II) in the perturbed vorticity transport equations and the last two
terms are associated with the entropy and viscous effects (terms III and IV).

To show the Mach number dependence of each term, the perturbed momentum and energy equations, Eqs.
(15) and (16) are combined into a convective wave equation, neglecting the viscous and thermal effect terms
and then a Mach number scaling is conducted. The hydrodynamic variables are scaled by their free stream
values: q0 � q1, U � U1, and P � q1U 2

1. For the perturbed variables, a Mach number expansion approach
[14,19] is employed; for example, a total velocity u can be expressed as u = U + Mu(1) + M2u(2) + M3u(3) + � � �
So, the perturbed velocity, u 0 �Mu(1) and from the linear acoustics, p 0 � (q1c1)u 0 and q 0 � (q1/c1)u 0. Time
is also scaled by l/c1, where l is a reference length scale and c1 is the speed of sound.

The convective wave equation is written as
o2p0

ot2|{z}
OðMÞ

þ ð~U � rÞ op0

ot
þ o~U

ot
� r

 !
p0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

OðM2Þ

� cP
q0

r2p0 þ o~u0

ot
� r

� �
P þ ð~u0 � rÞ oP

ot
þ c

oP
ot
ðr �~u0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

OðM3Þ

� cPr � ð~x0 � ~UÞ þ r � ð~X�~u0Þ
n o

þ q0

q0

D~U
Dt

 !
þrð~u0 � ~UÞ

( )
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

OðM4Þ

¼ � o

ot
DP
Dt

� �
|fflfflfflfflffl{zfflfflfflfflffl}

OðMÞ

. ð17Þ
Each term has order of q1c3
1uð1Þ=l2 (or q1c3

1U1=l2) multiplied by a Mach number to the power denoted in
Eq. (17). It is clearly shown that the terms responsible for the generation of perturbed vorticity (i.e. the right
hand side in Eq. (15)) have a Mach number dependency �O(M4), whereas the leading-order terms are �O(M).
It is also interesting to note that the only explicit acoustic source term, DP/Dt on the right hand side of Eq.
(17) has the same order as the first term in the convective wave equation, o2p 0/ot2.

So, it is evident that the first two terms on the right hand side of Eq. (15) are not so responsible for sound
generation at low Mach numbers and thereby one can exclude these to suppress the generation of perturbed
vorticity. The third term related to a momentum correction to the perturbed mass can also be neglected at low
Mach numbers. The last term (perturbed viscous force) is not necessary any more because there is no gener-
ation and diffusion of perturbed vorticity.

With the thermal terms neglected in the perturbed energy equation, a set of linearized perturbed compress-
ible equations (LPCE) is written as:
oq0

ot
þ ð~U � rÞq0 þ q0ðr �~u0Þ ¼ 0; ð18Þ

o~u0

ot
þrð~u0 � ~UÞ þ 1

q0

rp0 ¼ 0; ð19Þ
op0

ot
þ ð~U � rÞp0 þ cP ðr �~u0Þ þ ð~u0 � rÞP ¼ �DP

Dt
. ð20Þ
Since the curl of the linearized perturbed momentum equations, Eq. (19) yields
o~x0

ot
¼ 0; ð21Þ
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generation of perturbed vorticity is suppressed in the LPCE formulation: i.e. any further changes (generation,
convection, and decaying) of perturbed vorticity in time are prevented. A similar concept has also been used
by Ewert and Schröder [3] for deriving the acoustic perturbation equations (APE), in which only the acoustic
mode is resolved.

Now, one can use larger normal grid spacings near the wall because LPCE is an inviscid form. It is inter-
esting to note that the total derivative of the hydrodynamic pressure, DP/Dt is considered the only explicit
noise source term at low Mach numbers. This result agrees with the Goldstein’s generalized acoustic analogy
theory [6], which is derived from the linearized Navier–Stokes equations for the ‘non-radiating’ flow field.
Ewert and Schröder [3] also have shown that a dominant acoustic source for flows at an incompressible limit
can be represented by the hydrodynamic pressure.

3. Numerical methods

All the governing equations (PCE, LPCE) are non-dimensionalized by a reference length scale, speed of
sound c1, density q1, and pressure q1c2

1, and spatial discretizations are made by a sixth-order compact finite
difference scheme [8]. The governing equations are transformed into curvilinear coordinates using a Jacobian
transformation and metrics are calculated by the same compact scheme to retain the order of accuracy [20].
Time integration is performed by a four-stage Ruge-Kutta method, and a tenth-order implicit spatial filtering
proposed by Gaitonde et al. [5] is used to suppress high frequency errors that might be caused by grid non-
uniformity. At the far field boundaries, ETA (energy transfer and annihilating) boundary condition [2] is
applied to handle the outgoing acoustic waves.

On the solid surface, a non-slip, adiabatic wall boundary condition is used for PCE:
op0

on
¼ 0;

oq0

on
¼ 0; ~u0 ¼~0; ð22Þ
while a slip, adiabatic wall boundary condition is applied to LPCE:
op0

on
¼ 0;

oq0

on
¼ 0; ~u0 �~n ¼ 0. ð23Þ
In our previous study [15], it was shown that the slip wall boundary condition, Eq. (23) applied to the
perturbed Euler equations (PEE) generates excessive perturbed vorticity near the wall due to strong coupling
effects and therefore acoustic solution is considerably affected. In LPCE, however, Eq. (23) can be applied
without concerning such a matter because generation of perturbed vorticity is suppressed in the formulation.
In the following section, this issue will be discussed with illustrations.

4. Computational results and discussion

In this section, three numerical problems are validated for the present LPCE formulation: (i) laminar dipole
tone from a circular cylinder, (ii) quadruple sound of Kirchhoff vortex, and (iii) temporal mixing layer noise.
Computational issues of PCE and LPCE are also discussed, including generation and stability of perturbed
vorticity.

4.1. Cylinder dipole tone

In previous study [15], laminar dipole tone from a two-dimensional circular cylinder was considered to ver-
ify the perturbed compressible equations (PCE) at Reynolds number based on the cylinder diameter,
ReD = 200 and free stream Mach number, M1 = 0.3. Accurate acoustic solutions were obtained by PCE
and comparisons were made with the DNS and Curle’s acoustic analogy solutions. In this study, LPCE is
tested for the same problem but at ReD = 150 and M1 = 0.1 and solutions will be closely compared with
DNS and PCE.

For the present case, DNS is conducted for an O-grid (r/D = 180) with 181 · 241 points used in the cir-
cumferential and radial directions. The LPCE and PCE calculations are also performed with a grid-splitting
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technique for computational efficiency. First, a hydrodynamic flow is solved by the incompressible Navier–
Stokes equations (INS) with the same grid (181 · 241), and then acoustic field is computed by LPCE and
PCE with coarse ‘acoustic’ grid (81 · 181): a radial spacing of acoustic grid at the wall is four times larger
than the hydrodynamic grid. According to a speed-up factor of PCE [15], present calculations (INS with
LPCE or PCE) are approximately five times faster than the DNS.

The instantaneous pressure fluctuations, Dp0 ¼ ðP þ p0Þ � ðP þ p0Þ computed by each method are presented
in Fig. 1. The LPCE solution is in excellent agreement with those of DNS and PCE. The pressure fluctuations
along the lines at h = 90� and h = 30� (wake region) are examined in Fig. 2 and no significant differences are
found. The LPCE solutions well coincide with DNS, but PCE shows some oscillations in the near field (wake)
at h = 30�. These oscillations are due to the instability of perturbed vorticty and a full discussion on this issue
will follow afterwards.
Fig. 1. Instantaneous pressure fluctuation field, Dp0 ¼ p � �p for laminar flow past a cylinder at ReD = 150 and M1 = 0.1; (a) DNS, (b)
LPCE, and (c) PCE, 40 contour levels between �2 · 10�5 and 2 · 10�5, non-dimensionalized by q1c2

1.
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Fig. 3. Perturbed vorticity contours around the cylinder: (a) PCE, (b) LPCE, 40 contour levels between �0.1 and 0.1, non-dimensionalized
by c1/D.

J.H. Seo, Y.J. Moon / Journal of Computational Physics 218 (2006) 702–719 709



710 J.H. Seo, Y.J. Moon / Journal of Computational Physics 218 (2006) 702–719
The perturbed vorticity fields computed by PCE and LPCE are compared in Fig. 3. Fig. 3(a) clearly
shows the resolved perturbed vorticity field computed by PCE, while there is no perturbed vorticity gener-
ated by LPCE within the same contour range (see Fig. 3(b)). Actually, a peak value of perturbed vorticity
calculated by LPCE is 100 times smaller than the PCE result. Even though acoustic far field is well pre-
dicted by PCE, a near view of downstream wake region shows spurious generations of perturbed pressure
p 0 (see Fig. 4(a)). These errors are caused by improperly resolved perturbed vorticity in the region, where
acoustic grid is too coarse. At low Reynolds numbers, these spurious fluctuations do not severely affect
the acoustic field but it can be considerably manifested as the Reynolds number increases. This matter is
a very important issue, when one uses a grid-splitting technique. This is because spurious fluctuations
can be generated in the perturbed pressure, when perturbed vorticity is not properly resolved with the
acoustic grid used. In this regard, present LPCE has an important property that perturbed vorticity does
not need to be resolved with the acoustic grid, because its generation is suppressed in the formulation.
As shown in Fig. 4(b), one can clearly see that spurious p 0 fluctuations observed in Fig. 4(a) are not found
in the LPCE solution.
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Fig. 4. Perturbed pressure contours in the near field: (a) PCE, (b) LPCE, 20 contour levels between �2 · 10�5 and 2 · 10�5, non-
dimensionalized by q1c2
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As described in Section 2.3, LPCE is an approximation at low Mach numbers and it is important to know
the Mach number limit of LPCE. The LPCE is now tested for the present cylinder dipole tone at M = 0.3 and
0.5. Comparisons are made in Fig. 5 with the corresponding DNS solutions. At M = 0.3, the LPCE solution
agrees well with the DNS result, but some discrepancy is observed at M = 0.5 due to the neglected coupling
terms. This seems consistent with the order analysis described earlier. The relative importance of the neglected
terms is proportional to M3. At M = 0.3, the difference between DNS and LPCE is expected to be 0.33, or
about 3%, which is small enough to be neglected. At M = 0.5, however, the difference becomes 12.5% and
the computed result shows such a difference in Fig. 5(b). From this test, one can see that the Mach number
limit for LPCE lies between M = 0.3 and 0.5, but acoustics for M > 0.3 do not have to be solved by hybrid
methods, rather by DNS.
4.2. Quadruple sound of Kirchhoff vortex

In order to investigate more closely the source of errors caused by falsely resolved perturbed vorticity, a
quadruple sound of Kirchhoff vortex is considered. This is a good example that has stiff gradient of hydrody-
namic vorticity at the edge of the vortex patch, and therefore pronounced non-linear coupling effects are
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Fig. 5. Comparison of instantaneous pressure fluctuations along the line at x = 0 above the cylinder: (a) M = 0.3, (b) M = 0.5.
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expected in acoustic calculation. By rotation of vortex patch, Kirchhoff vortex generates quadruple sound, for
which an analytical solution was derived by Müller [13].

The Kirchhoff vortex is a patch of constant vorticity X inside an ellipse and zero vorticity outside. A sche-
matic is shown in Fig. 6. The Kirchhoff vortex rotates with a constant angular velocity defined as
H ¼ ab

ðaþ bÞ2
X;
where a and b are the semi-major and -minor axes of an ellipse. The flow Mach number based on a rotating
speed is defined by
MH ¼
ðaþ bÞH

c
;

where c is the speed of sound.
For an almost circular vortex case, the semi-major and -minor axes are written as
a ¼ �að1þ eÞ b ¼ �að1� eÞ;

where �a is a mean radius and e� 1. For this case, an analytical solution for acoustic pressure [13] can be ob-
tained from the Helmholtz equation and is written as
p0ðr; h; tÞ ¼ Re AH ð1Þ2 ðkrÞeið2ðh�HtÞÞ
� �

; ð24Þ
where H ð1Þ2 is the Hankel function of the second order, k = 2H/c, and A is defined as
A ¼ 4iq�aeH2e�ip=2

kH 0ð1Þ2 ðk�aÞ
. ð25Þ
In this study, a quadruple sound of Kirchhoff vortex at MH = 0.1 and e = 0.001 is computed by LPCE and
PCE. The hydrodynamic field is obtained from the exact solution of the incompressible Euler equations
[13], and acoustic calculations are conducted for two different grids: the vortex patch is resolved with
100 · 100 points (fine) and 10 · 10 points (coarse).

Fig. 7 shows instantaneous pressure fluctuation fields calculated by LPCE and PCE for fine and coarse
grids at t = 500a/c (after four rotations of Kirchhoff vortex). The fine grid solutions of LPCE and PCE are
U∇× = Ω

0U∇× =

Θ

a
b

Fig. 6. Kirchhoff vortex.



Fig. 7. Kirchhoff vortex sound, instantaneous pressure fluctuation contours: (a) PCE (fine grid), (b) LPCE (fine grid), (c) PCE (coarse
grid), (d) LPCE (coarse grid), 40 contour levels between �2 · 10�8 and 2 · 10�8, non-dimensionalized by q1c2
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almost identical. In comparison with the exact solution, one can clearly see in Fig. 8 that only the coarse grid
solution of PCE considerably over-predicts the pressure fluctuations and this is due to the falsely resolved per-
turbed vorticity, as mentioned before.

Fig. 9 clearly compares the contours of perturbed vorticity computed by PCE for fine and coarse grids. The
perturbed vorticity resolved by the fine grid exists only at the edge of the vortex patch, while coarse grid
solution shows a largely amplified perturbed vorticity field through the coupling effects. As a result, pressure
fluctuation field is also unphysically amplified. On the contrary, LPCE yields a consistent, grid-independent
acoustic solution because generation of perturbed vorticity is suppressed in the formulation.

4.3. Mixing layer noise

A two-dimensional mixing layer is considered to investigate the sound field [4] induced by vortex motions
(i.e. pairing, co-rotating, and merging) [9]. The hydrodynamic and acoustic computational domains are
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Fig. 9. Perturbed vorticity contours around the Kirchhoff vortex; calculated by PCE: (a) fine grid, (b) coarse grid, 20 contour levels
between �0.005 and 0.005, non-dimensionalized by c1/a.
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schematically shown in Fig. 10, and a periodicity is assumed in the streamwise direction for the domain,
2L.

An initial condition for the velocities is defined as
U 0 ¼ U1 tanh
2y
d

� �
þ Cnoise

o/
oy
;

V 0 ¼ �Cnoise

o/
ox
;

ð26Þ
where a shear layer of thickness, d = L/14 is perturbed with white noise and Cnoise = 0.001. A velocity poten-
tial for the white noise, / is given by
/ ¼ exp
�4y2

d2

� �
ðsinð8pxÞ þ sinð20pxÞÞ. ð27Þ
A flow Mach number based on the shear rate is Ms = 2U1/c = 0.1 and Reynolds number based on the initial
shear layer thickness is Red = 10,000.

First, evolution of mixing layer is calculated with a hydrodynamic grid (200 · 200) by the incompressible
Navier–Stokes equations. According to the linear stability analysis [1], the most unstable wave length is
approximately 7d [10]. Thus, domain size and initial white noise employed in this study are intended to gen-
erate four fundamental eddies (i.e. Kelvin–Helmholtz vortices). The time evolution of hydrodynamic vorticity
Fig. 10. Schematic of temporal mixing layer noise and computational domain.
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is presented in Fig. 11. At t = 30d/U1, four fundamental eddies appear (first pairing) and they will merge into
two eddies (second pairing). Finally, one eddy remains after the third pairing but further development is
restricted by the domain size.

The acoustic pulse generated at each pairing-stage is computed by LPCE and PCE with two different
grids. The fine grid has the same resolution as the hydrodynamic grid (200 · 200) for mixing layer
(2L · 2L), while only 40 · 40 points are used in the coarse grid case. Fig. 12 shows the time history of
instantaneous pressure fluctuations Dp 0 monitored at (0,4L). It clearly exhibits the acoustic pulse generated
at each pairing-stage as well as the high frequency signals caused by the initial white noise. The PCE cal-
culation with coarse grid yields errors, which are small at early stages but grow in time because falsely
resolved perturbed vorticity tends to get self-excited. On the contrary, LPCE solutions are very much
grid-independent. In Fig. 13, instantaneous pressure fluctuation fields are compared at t = 140d/U1. As
expected, only the coarse grid solution of PCE is inconsistent with the others. Fig. 14 also shows the
perturbed vorticity fields calculated by PCE with fine and coarse grids. As discussed, perturbed vorticity
computed by PCE with coarse grid is noticeably different from that with fine grid in structures and scales.
Thereby, acoustic field was considerably affected.

In summary, perturbed vorticity is not a major contributor to the generation of acoustic waves at low Mach
numbers but can be a source of unwanted errors. Besides, a length scale of perturbed vorticity is usually so
small that it is difficult to be resolved with the coarse acoustic grid. By suppressing its generation, present
LPCE ensures consistent, grid-independent acoustic solutions at low Mach numbers.
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Fig. 11. Time evolution of vorticity field in the mixing layer: (a) t = 14d/U1, (b) t = 30d/U1, (c) t = 60d/U1, (d) t = 120d/U1.



Fig. 13. Instantaneous pressure fluctuation fields at t = 140d/U1: (a) PCE (fine), (b) LPCE (fine), (c) PCE (coarse), (d) LPCE (coarse), 40
contour levels between �5 · 10�6 and 5 · 10�6, non-dimensionalized by q1c2
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Fig. 14. Perturbed vorticity contours at t = 140d/U1; calculated by PCE: (a) fine grid, (b) coarse grid, 20 contour levels between �0.4 and
0.4, non-dimensionalized by 2c1/L.
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5. Conclusions

In the context of hydrodynamic/acoustic splitting method, a non-linear form of the perturbed equations
allows perturbed vorticity to be generated by a coupling effect between the hydrodynamic vorticity and the
perturbed velocities. At low Mach numbers, the effect of perturbed vorticity on sound generation is not sig-
nificant. However, the perturbed vorticity easily becomes unstable, and causes inconsistent acoustic solutions,
based on grid dependence. In the proposed linearized perturbed compressible equations (LPCE), generation of
perturbed vorticity is suppressed by dropping the source terms in the perturbed vorticity transport equations.
These terms are found to have a Mach number dependency �O(M4), whereas the leading-order terms (includ-
ing the acoustic source term) are �O(M). For various dipole and quadruple vortex-sound problems at low
Mach numbers, it is successfully demonstrated that present LPCE ensures consistent, grid-independent acous-
tic solutions with computational efficiency.
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